AI检索引擎
根据提供的搜索结果,以下是国内外AI检索引擎的头部排行前五个,以及它们的官方网址和优缺点分析:
-
Perplexity AI
- 官方网址: https://www.perplexity.ai/
- 优点: 迭代速度快,效果佳,功能创新;在事实类问题上表现出色;保持良好发展势头[2][4]
- 缺点: 在引文回忆率和引文精确度上表现不佳;有批评认为其信源不足、结果价值低[2][4]
-
You.com
根据提供的搜索结果,以下是国内外AI检索引擎的头部排行前五个,以及它们的官方网址和优缺点分析:
Perplexity AI
You.com
operating-computer,https://t.co/qXKNbRduXU,这个项目演示了如何让 GPT-4V 来控制自己的电脑,你需要做的就是告诉它完成一个怎样的任务,例如,打开 Google Docs 写一篇文章,然后发布并分享给同事。
https://blog.alswl.com/2023/11/build-blog-comment-system-based-on-free-cloud-service/
博客自 2012 年从 WordPress 迁移到静态站点后,就选择了 Disqus 作为评论系统。 但最近 Disqus 硬广告过于频繁,迫切寻找新的评论系统。
Disqus 官方 明确说明,要去掉广告就付费。
What if I want to remove Ads? If you’d like to remove Disqus Ads from your integration, you may purchase and ads-free subscription from your Subscription and Billing page. More information on Disqus ads-free subscriptions may be found here.
OK,那再见吧 Disqus,我会找到可靠、免费、易用的评论系统。 最后既然是寻找新的评论系统,现在 2023 年了, 我希望这个新系统充分使用云服务的便利,要做到 免费、可靠、易运维。
https://zhuanlan.zhihu.com/p/570140268
import numpy as np
import requests,json
import matplotlib.pyplot as plt
import pyecharts.options as opts
from pyecharts.charts import Pie
class Notion_Data:
def __init__(self):
print("欢迎来到Notion数据可视化分析!")
# 获取用户数据库ID及Token密钥
# 数据处理
def Notion_Data_deal(self, Database_ID: str, Token_KEY: str):
base_url = "https://api.notion.com/v1/databases/"
"""
接口匹配
"""
headers = {
"Authorization": "Bearer " + Token_KEY,
"accept": "application/json",
}
query = {"filter": {"property": "出版社", "checkbox":{"equals":True}}}
# 获取Notion页面下的详细信息 https://developers.notion.com/reference/post-database-query
response = requests.post(base_url + Database_ID + "/query", headers=headers, data=query)
jst = json.loads(response.text)
return jst
def Json_Data_deal(self, Database_ID: str, Token_KEY: str, Type: str): # 类型仅限为:书籍、影片
dict = self.Notion_Data_deal(Database_ID, Token_KEY)
"""获取到数据列"""
data_len = len(dict['results'])
# 统计类型数量,进行后续图形比例
# 书籍以出版社为划分,影片以类别划分
if Type == "影片":
"""获取到数据列"""
dic = {}
dtc = {}
for i in range(data_len):
name = dict['results'][i]['properties']['片名']['title'][0]['plain_text']
select = dict['results'][i]['properties']['类别']['multi_select']
classify = []
for j in range(len(select)):
classify.append(dict['results'][i]['properties']['类别']['multi_select'][j]['name'])
dic[name] = classify # 类别
ls = list(dic.items()) # 获取数据数量
for i in range(len(ls)):
for j in range(len(ls[i][1])):
if ls[i][1][j] in "奇幻":
ls[i][1][j] = "科幻"
if ls[i][1][j] in "惊悚" or ls[i][1][j] in "悬疑":
ls[i][1][j] = "恐怖"
if ls[i][1][j] in "故事" or ls[i][1][j] in "扫黑" or ls[i][1][j] in "生活":
ls[i][1][j] = "剧情"
if ls[i][1][j] in "运动":
ls[i][1][j] = "冒险"
dtc[ls[i][1][j]] = dtc.get(ls[i][1][j], 0) + 1
lt = list(dtc.items())
print("有效数据:" + str(len(dic)))
return lt
if Type == "书籍":
dic = {}
for i in range(data_len):
try:
name = (dict['results'][i]['properties']['出版社']['select']['name'])
dic[name] = dic.get(name, 0) + 1
except Exception:
pass
continue
ls = list(dic.items())
return ls
def Notion_Visualization(self, Database_ID: str, Token_KEY: str, Type: str): # 交互式可视化图表
data = self.Json_Data_deal(Database_ID, Token_KEY, Type)
lenght = len(data)
sum = 0
count_num, name = [], []
for i in range(lenght):
sum += int(data[i][1])
name.append(data[i][0])
for j in range(lenght):
a = round(int(data[j][1]) / sum * 100, 2) # 保留为两位小数
count_num.append(a)
np.set_printoptions(precision=2)
data_pair_temp = [list(data) for data in zip(name, count_num)]
p = (
Pie() # 实例化
.add(
series_name=Type, # 系列名称
data_pair=data_pair_temp, # 馈入数据
radius="65%", # 饼图半径比例
center=["50%", "50%"], # 饼图中心坐标
label_opts=opts.LabelOpts(is_show=False, position="center"), # 标签位置
)
.set_global_opts(legend_opts=opts.LegendOpts(is_show=True)) # 不显示图示
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")) # 标签颜色
.render(Type + ".html") # 渲染文件及其名称
# .render_notebook()
)
print("文件已保存在当前程序目录!")
"""
# 静态可视化图表
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 显示中文标签,处理中文乱码问题
plt.rcParams['axes.unicode_minus'] = False # 坐标轴负号的处理
plt.pie(x=count_num, labels=name, autopct='%.2f%%')
plt.legend(loc='center')
plt.savefig("./Image/Vedio.png")
plt.show()
# print(name, count_num)
"""
if __name__ == '__main__':
text = Notion_Data()
Database_ID = str(input("请输入数据库ID:\n"))
Token_KEY = str(input("请输入Token密钥:\n"))
Type = str(input("请输入类型(仅限书籍、影片):\n"))
text.Notion_Visualization(Database_ID, Token_KEY, Type)
# print(text.Json_Data_deal(Database_ID, Token_KEY, Type))
本代码是为创建Notion数据库(Database)可视化图标,若使用Notion页面为页面(page),该教材不符合你所使用。 通俗来讲,Notion数据库是表格。但是Notion在创建之初就会将其定义为是数据库 or 页面,那么如何判断我的Notion是数据库还是包?
https://www.volcengine.com/theme/4241214-R-7-1
在Notion中,可以通过Python的Notion API 来获取页面的块和子块。首先需要安装Notion API 的Python库:
pip install notion-client
在代码中引入notion_client库和相关模块,并设置访问 数据库 所需的token和datab as e的id:
https://juejin.cn/post/7083147111897923614
目的:每天都要通过微信公众号进行发送文章,但是每次仅仅是修改图文信息,其他设置并无不同,故通过自动化可节省大量时间,实现一键发文。 在这过程中,也遇到了一些问题,总结如下: (1)切换窗口操作时遇到 wd.title的名字一模一样(暂时使用了选择最近打开窗口解决) (2)不能准确定位到元素,后来通过copy_xpath解决,之前一直手写,后续要加强手写能力 (3)有一个输入框一直定位不到,原来是iframe中的,切换了一下就解决了 (4)下拉选项元素定位不到,要加等到时间(sleep(3)) (5)一个元素定位不到,原因是不处于可视界面,将滚动条拖动到元素位置,便可以定位到
Ladder是一个绕过付费墙工具,这是1ft.io和12ft.io的自托管版本,灵感来自13ft,可以帮助用户免费阅读各种付费内容,并从任何 URL 中删除 CORS 头,例如彭博社新闻,金融时报、金融时报、纽约格拉布街新闻网、哈佛商业评论、Quora、华尔街日报、华盛顿邮报等等,具体的可以自己试试,复制链接粘贴即可解锁绕过付费墙。支持Windows、macOS和linux等等。
https://stratechery.com/2023/openais-misalignment-and-microsofts-gain/
I have, as you might expect, authored several versions of this Article, both in my head and on the page, as the most extraordinary weekend of my career has unfolded. To briefly summarize:
OpenAI was founded in 2015 as a “non-profit intelligence research company.” From the initial blog post :
I was pretty cynical about the motivations of OpenAI’s founders, at least Altman and Elon Musk; I wrote in a Daily Update :
Whatever Altman and Musk’s motivations, the decision to make OpenAI a non-profit wasn’t just talk: the company is a 501(c)3; you can view their annual IRS filings here . The first question on Form 990 asks the organization to “Briefly describe the organization’s mission or most significant activities”; the first filing in 2016 stated:
Two years later, and the commitment to “openly share our plans and capabilities along the way” was gone; three years after that and the goal of “advanc[ing] digital intelligence” was replaced by “build[ing] general-purpose artificial intelligence”.
In 2018 Musk, according to a Semafor report earlier this year , attempted to take over the company, but was rebuffed; he left the board and, more critically, stopped paying for OpenAI’s operations. That led to the second critical piece of background: faced with the need to pay for massive amounts of compute power, Altman, now firmly in charge of OpenAI, created OpenAI Global, LLC, a capped profit company with Microsoft as minority owner. This image of OpenAI’s current structure is from their website :
OpenAI’s corporate structure
OpenAI Global could raise money and, critically to its investors, make it, but it still operated under the auspices of the non-profit and its mission; OpenAI Global’s operating agreement states:
Microsoft, despite this constraint on OpenAI Global, was not only an investor, but also a customer, incorporating OpenAI into all of its products.
https://github.com/abi/screenshot-to-code
This simple app converts a screenshot to HTML/Tailwind CSS. It uses GPT-4 Vision to generate the code and DALL-E 3 to generate similar-looking images. Details Youtube.Clone.mp4 See the Examples section below for more demos.
🆕 Try it here (bring your own OpenAI key - your key must have access to GPT-4 Vision. See FAQ section below for details ). Or see Getting Started below for local install instructions.
https://blog.csdn.net/weixin_43145427/article/details/125193957
Selenium是一个用电脑模拟人操作浏览器网页,可以实现自动化,测试等!
pip install selenium
补充添加代理参数:options.add_argument("--proxy-server=http://XXXXX.com:80")
可以测试是否正常使用,以下代码: